RESEARCH DEPARTMENT

BAND III TRANSMITTING AERIAL FOR THE WINTER HILL V.H.F. TELEVISION STATION

Technological Report No. RA-2/1 UDC 621.396.712 1967/4
D.W. Osborne, M.I.E.E.
R.D.C. Thoday, A.M.I.E.R.E.

This Report is the property of the British Broadeasting Corporation and may not be reproduced in any form without the written permission of the Corporation.

$$
\begin{aligned}
& \text { Trig Report usee SI untos in aocor- }
\end{aligned}
$$

BAND III TRANSMITTING AERIAL FOR THE WINTER HILL V.H.F. TELEVISION STATION

INTRODUCTION

The Winter Hill relay station came into full service on the 25 th March 1966. It provides a v.h.f. television service to western Lancashire and parts of Cheshire. Among the towns and cities included in the service area are Manchester, Liverpool, Blackpool, Preston, Bolton, Chester and Blackburn.

SUMMARY OF INSTALLATION

Site:
The site is approximately 8 km North-West of Bolton, grid reference SD660146, height 438 m a.m.s. 1 .

Support Structure:

General Arrangement:
Channel:

Aerial:
The support structure, which is used for both BBC and ITA aerials, consists of a $309 \cdot 4 \mathrm{~m}$ (1015 ft) stayed mast, with stays directed along bearings of $101^{\circ}, 221^{\circ}$ and 341° ETN. The mast has a $2.74 \mathrm{~m}(9 \mathrm{ft})$ diameter cylindrical cross-section up to the $198.1 \mathrm{~m}(650 \mathrm{ft})$ level. Between the $198.1 \mathrm{~m}(650 \mathrm{ft})$ and $259 \mathrm{~m}(850 \mathrm{ft})$ levels, the cross-section is triangular with a side dimension of $1.98 \mathrm{~m}(6 \mathrm{ft} 6 \mathrm{in}$.). Above the 259 m (850 ft) level the cross-section is triangular with a side dimension of $1 \cdot 3 \mathrm{~m}(4 \mathrm{ft} 3 \mathrm{in}$.$) . The mast, between the 198 \cdot 1 \mathrm{~m}(650 \mathrm{ft})$ and $259 \cdot 1 \mathrm{~m}$ $(850 \mathrm{ft})$ levels, is enclosed in a $3.66 \mathrm{~m}(12 \mathrm{ft})$ diameter glass fibre shield and between the $259.1 \mathrm{~m}(850 \mathrm{ft})$ and $305.4 \mathrm{~m}(1002 \mathrm{ft})$ levels in a 2.74 m $(9 \mathrm{ft})$ diameter glass fibre shield.

See Fig. 1.

Channel 12 with vertical polarization is used. The vision carrier is offset -23.53125 kHz . The sound carrier is nominally offs et -40.3125 kHz and steered to within $\pm 300 \mathrm{~Hz}$ of the half line frequency of the ITA transmissions from Moel-y-Parc.

The aerial ${ }^{1}$ consists of eight tiers of vertical 1λ dipoles formed by eight panel aerials, four panels being mounted off the mast face on bearing 281° ETN and four off the mast face on bearing 41° ETN.

Each of the panel aerials (denoted type B) mounted off the mast face on bearing 41° ETN has two tiers spaced $1.52 \mathrm{~m}(5 \mathrm{ft})$ apart, each consisting of two vertical 1λ dipoles with a horizontal separation of $0.762 \mathrm{~m}(2 \mathrm{ft}$ 6 in .) and spaced $0.38 \mathrm{~m}(1 \mathrm{ft} 3 \mathrm{in}$.) from a $1.83 \mathrm{~m}(6 \mathrm{ft})$ by $3.05 \mathrm{~m}(10 \mathrm{ft})$ wire mesh screen. An additional screen, which extends $0.61 \mathrm{~m}(2 \mathrm{ft})$ from the main screening frame, is placed in the vertical plane between the dipoles. Details of these panels are shown in Fig. 2. The panel aerials (denoted type A) mounted off the mast face on bearing $281^{\circ} \mathrm{ETN}$ are similar to those described above, but in this case two screens are placed in the vertical plane between the dipoles. Details of these panels are shown in Fig. 3. A plan view of the mast and panel arrangement is shown in Fig. 4. The relative amplitudes and phases of the panel currents are shown in Fig. 5. The mean aerial height is $244.4 \mathrm{~m}(802 \mathrm{ft})$. There are independent main feeders to each half aerial.

Power:

Templet and horizontal radiation pattern (h.r.p.):

Vertical radiation pattern (v.r.p.):

A transmitter power of 8.5 kW is used.

Gain:

Programme Source:

Note:
See Fig. 6 and Note.

See Fig. 7.
Mean intrinsic gain $\quad 9 \cdot 7 \mathrm{~dB}$
Deduct: loss due to distribution feeder, gapfilling

and possible misalignment $\quad \underline{0.8 \mathrm{~dB}}$| Mean Net gain | 8.9 dB |
| :--- | :--- |

Deduct:loss due to main feeder type F \& G $3.1 / 8 \mathrm{in}$.	1.7 dB	
Network loss	1.0 dB	2.7 dB
Mean effective gain		6.2 dB

Programme is provided by direct pick-up of the transmis sion from Holme Moss.

The aerial design and installation was carried out by contractors.

REFERENCE

1. Detailed information on the construction and dimensions of the aerial is given on the following drawings held by BBC Transmitter Planning and Installation Department:

Mast and Aerials, Outlines and Orientatiens	PID6047.2.149A4
Layout of Aerials and Feeders	EMI drawing No. 9A/D 88689
Schematic Diagram	EMI drawing No. 9A/C-C88689

Fig. 1. General arrangement of aerials on mast

Fig. 2. Aerial panel type B

Fig.3. Aerial panel type A

Fig.5. Arrangement of dipoles on panels

Fig.6. Templet and horizontal radiation pattern VERTICAL POLARIZATION
Channel 12 (Vision carrier 209.75 MHz , Sound carrier 206.25 MHz) Mean effective gain: 6.2 dB - Maximum permissible ERP. Transmitter power: 8.5kW -_--- Minimum desirable E.R.P. Mean E.R.P. 35 kW

Unit field strength corresponds to an E.R.P. of 10 kW

Fig. 7. Vertical radiation pattern

