CHAPTER 14 #### MOTOR CONNECTION DIAGRAMS - 1 THREE-PHASE MOTORS - 2 SINGLE-PHASE MOTORS - 3 FRACTIONAL H.P. MOTORS Connections for all standard Brook motors and control gear are given on the following pages. A fully detailed connection diagram is sent out with every starter, and an internal wiring diagram with every motor. Two- and Three-phase Brook motors can be used with any make of starter and Brook starters with any make of motor, but we advise that they be ordered together so that they can be tested at the same time. Single-phase motors and starters are only offered as one unit as these must be tested together. This does not apply to certain self-starting types of motor. #### THREE-PHASE MOTORS #### **TERMINALS** A, B, C connected to supply. #### REVERSAL Exchange one pair of supply lines. #### DIRECT #### **TERMINALS** All connected to 'Star-Delta' starter for normal duty. #### DIRECT STARTING $A_1 \! - \! B_2, \; B_1 \! - \! C_2, \; C_1 \! - \! A_2$ are linked and supply connected to A_2 B_2 $C_2.$ #### REVERSAL Exchange one pair of the supply lines. **STAR-DELTA** ### DIRECT STARTING $A_1 \!\!-\! B_2, \; B_1 \!\!-\! C_2$ and $C_1 \!\!-\! A_2$ are linked. Mains connected to A_2 B_2 $C_2.$ All connected to 'Series-Delta' (ZDD) starter for Series-Delta starting. #### **REVERSAL** **TERMINALS** Exchange one pair of the supply lines. SERIES - DELTA #### THREE-PHASE MOTORS STATOR TERMINALS A, B, C connected to supply. #### ROTOR TERMINALS Connected to resistance during starting and then short circuited. #### REVERSAL Exchange one pair of supply lines. #### **DUAL VOLTAGE (DELTA-STAR)** **TERMINALS** — LOW VOLTAGE. Link A_1 – B_2 , B_1 – C_2 , C_1 – A_2 . Line connected to B_2 , C_2 , A_2 . HIGH VOLTAGE. Link A₁-B₁-C₁. Line connected to B₂, C₂, A₂. Alternatively on low voltage, a standard 'Star-Delta' starter may be used. On high voltage only directon-line starting is possible. #### REVERSAL To reverse direction of rotation, exchange one pair of supply lines. HIGH VOLTAGE #### THREE-PHASE MOTORS #### TWO SPEED (POLE CHANGE) TERMINALS — LOW SPEED. Line connected to A₃, B₃, C₃. HIGH SPEED. Line connected to C₂, B₂, A₂, and terminals A₃, B₃, C₃ linked. #### REVERSAL To reverse direction of rotation of both speeds, exchange one pair of supply lines. To reverse direction of one speed only, exchange two wires from the motor on to the terminal board, A₃ and B₃ for the low speed, C₂ and B₂ for the high speed. #### TWO SPEED (DUAL WOUND) TERMINALS — LOW SPEED. Line connected to LA, LB, LC. HIGH SPEED. Line connected to HA, HB, HC. #### REVERSAL To reverse direction of rotation of both speeds, exchange one pair of supply lines. To reverse direction of one speed only, exchange any two wires coming from that winding on to the terminal board. #### SINGLE-PHASE MOTORS ## SERIES PARALLEL, CAPACITOR START INDUCTION RUN—HC1 AND ZC2 TYPE STARTERS #### **TERMINALS** $ZC2-A_1$, A_2 , A_3 , A_4 connected to starter. #### REVERSAL Exchange position of two red leads from starting winding connected to Z_1 and Z_2 . # PERMANENT CAPACITOR START AND RUN # A_1 , A_2 connected to supply. Z_2 , A_2 connected to capacitor. **REVERSAL**. **TERMINALS** Exchange position of two red leads from starting winding connected to Z_1 and Z_2 . Suitable for direct-on-the-line starting. #### TERMINALS A_1 , A_2 , Z_2 connected to starter. #### REVERSAL Exchange position of two red leads from starting winding connected to Z_1 and Z_2 . This type uses capacitor slip ring starters in conjunction with continuously rated capacitors. #### SINGLE-PHASE MOTORS LO-AMP-TOROUE #### LO-AMP-TORQUE TERMINALS A_1 , A_2 , A_3 , A_4 , Z_2 connected to starter. #### REVERSAL Exchange position of two red leads from starting winding connected to Z_1 and Z_2 . This type uses special starters in conjunction with continuously rated capacitors. ## SINGLE-PHASE, CAPACITOR START INDUCTION RUN, SELF-STARTING MOTORS Centrifugal switch is connected internally between Z_1 and A_1 . This motor is completely wired internally and does not require any additional links. This motor incorporates a centrifugal switch and is self-starting against full load torque. The CAPACITOR is a two terminal electrolytic type mounted in a steel case on the side of the motor. MAINS are connected to A_1 and A_2 . #### **REVERSAL** Exchange position of two red leads from starting winding connected to Z_1 and Z_2 . #### DIRECTION This motor is connected to run in a clockwise direction looking at the driving end. ## CAPACITOR START INDUCTION RUN DUAL VOLTAGE MOTOR #### FRACTIONAL HORSE POWER MOTORS 'GRYPHON' RANGE 42 FRAME RANGE 66 FRAME RANGE ## CONNECTION DIAGRAMS THREE PHASE All motors are direct starting #### THREE PHASE, THREE WIRE To reverse direction of rotation interchange lines L_1 and L_2 . #### THREE PHASE DELTA-STAR DUAL VOLTAGE MOTOR To reverse direction of rotation interchange lines L_1 and L_2 . | Voltage | Line connections | Link
together | |---------|---------------------------|------------------| | | L_1 L_2 L_1 | | | High | A_2 B_2 C_2 | $A_1-B_1-C_1$ | | Low | $A_2-C_1 B_2-A_1 C_2-B_1$ | | #### THREE PHASE FITTED WITH REVERSING SWITCH #### TWO PHASE Note — If the system is three wire, link A_1 - B_1 and connect to the common line. Reversal — three wire system — interchange L_3 and L_4 . four wire system — interchange L_1 and L_3 . ## SINGLE PHASE, SPLIT PHASE OR CAPACITOR START INDUCTION MOTOR FITTED WITH THERMAL CUT-OUT To reverse the direction of rotation, interchange the two red leads from the starting winding terminals A_1 , Z_2 and A_2 , Z_2 . #### CAPACITOR START AND RUN To reverse direction of rotation, interchange the starting winding leads on terminals Z_1 and Z_2 . #### SPLIT PHASE OR CAPACITOR START DUAL VOLTAGE To reverse the direction of rotation interchange the starting winding leads on terminals Z_1 and Z_2 . ## SPLIT PHASE OR CAPACITOR START SINGLE VOLTAGE GRYPHON BRITISH STANDARD MOTOR FOR REVERSING DUTY ## SPLIT PHASE OR CAPACITOR START DUAL VOLTAGE FOR REVERSING DUTY #### HIGH VOLTAGE LOW VOLTAGE ## SPLIT PHASE OR CAPACITOR START FOUR-WAY TERMINAL BOARD To reverse the direction of rotation interchange the starting winding leads on terminals Z_1 and Z_2 . ## NEMA AND CEMA CONNECTIONS FOR AMERICAN AND CANADIAN MOTORS WITH LOOSE LEADS THREE PHASE - Single voltage - Across-the-line starting STATOR WINDING Three wires out STATOR WINDING Delta connected — six wires out To reverse rotation — interchange any two lines. **THREE PHASE** — Series Parallel Star for motors up to an including 10 h.p. To reverse rotation — interchange any two lines. 220V motors are usable on 208V network systems. Current at 208V is $1.06 \times \text{current}$ at 220V. Connection Diagrams **THREE PHASE** — Series Parallel Delta for motors above 10 h.p. 12 leads out to 9 terminals. To reverse rotation — interchange any two lines. 220V motors are usable on 208V network systems. Current at 208V is $1.06 \times$ current at 220V. For across-the-line starting connect as below — | 37.1 | Line connections | | | Timb to set loss | | |---------|------------------|----|----|--------------------------------|--| | Voltage | L1 | L2 | L3 | Link together | | | High | T1 | T2 | Т3 | T4-T7, T5-T8, T6-T9 | | | Low | T1 | T2 | Т3 | T1–T6–T7, T2–T4–T8
T3–T5–T9 | | For Wye-Delta starting, remove leads T10, T11 and T12 from terminals T2, T3 and T1 respectively and connect as below — | Voltage | Connect to starter | Link together | |---------|---------------------------|---| | High | T1, T2, T3, T10, T11, T12 | T4-T7, T5-T8, T6-T9 | | Low | T1, T2, T3, T10, T11, T12 | T1-T7, T2-T8, T3-T9
T10-T4, T11-T5, T12-T6 | #### THREE PHASE Increment start motor with six leads from stator winding **Note** — The current rating of the overload heaters should be half the motor F.L.C. Contacts 1 are closed first, followed shortly by contacts 2 207 #### THREE PHASE #### Increment start motor with 12 leads from stator winding A standard Brook motor connected delta with 12 leads out to 9 terminals may be connected for part winding starting on low voltage. Leads T10, T11 and T12 should be removed from terminals T2, T3 and T1 respectively and the motor connected to the starter as shown. **Note** — The current rating of the overload heaters should be half the motor F.L.C. Contacts 1 are closed first, followed shortly by contacts 2 # SINGLE PHASE Single voltage LOW TS TI LINES Dual voltage HIGH TE TS TA TI LINES Dual voltage HIGH TI TI LINES To reverse rotation — interchange leads T5 and T8. #### **CHAPTER 15** #### CONTROL GEAR #### ILLUSTRATIONS AND GENERAL SPECIFICATIONS Modern contactors give improved performance in much smaller space. They can be mounted on or very near to the machines they control, saving conduit, wiring and installation costs. #### Direct on Line - Type HAT A remarkably small, yet robust starter for the control of one, two or three-phase A.C. motors up to 0.5 h.p. where I.E.E. regulations apply and when no-volt release is not required. Can be used up to a maximum of 2 h.p. where regulations permit. Direct on Line — Type AT3. A small compact air break contactor type automatic starter designed to give maximum service while occupying the minimum space. It can easily be mounted on the machine at the most convenient point for the operator. #### Flush Mounting Type ATF A similar starter built for flush cavity mounting is also manufactured. Both starters are for single- or three-phase supply. Maximum ratings for three-phase at various voltages are 1.5 to 6 h.p. and for single-phase 1.0 to 3 h.p. Carries CSA approval No. 10778. For automatically reversing the rotation of cage induction motors, this compact starter is mounted in a small dust-protecting, diecast enclosure which can easily be mounted on the machine at the most convenient point. Forward and reverse contactors are both electrically and mechanically interlocked. Maximum ratings for three-phase are 1.5 to 6 h.p. and for single-phase 1.0 to 3 h.p., dependent upon supply voltage. (Carries CSA approval). Derate by 50 per cent if this starter is to be used for frequent 'inching' (jogging) or 'plugging' duties. #### **CHAPTER 17** #### CONTROL GEAR CONNECTION DIAGRAMS #### Graphical Symbols for Electrical Purposes Based on British Standard and International Electro-Technical Commission specifications. Each symbol is placed in the approximate position of the part it represents on the starter | DESCRIPTION | GRAPHICAL SYMBOL | CODE | DESCRIPTION | GRAPHICAL SYMBOL | CODE
LETTER | |---|---|--|---|------------------|--------------------------------------| | CONTACTOR:
Single Break
Single & Triple Pole | [4] \$\frac{1}{4} \frac{1}{4} \ | c. | ISOLATING SWITCH: | OR OR | ıs. | | CONTACTOR:
Double Break
Single & Triple Pole | | c . | EARTH (GROUND)
CONNECTION | <u></u> | E
or
GRD | | AUXILIARY SWITCH:
Normally Open
Single and Double | ا ا ا | C ₂ ,C ₃ etc. | CAPACITOR | <u>+</u> | CAP. | | AUXILIARY SWITCH:
Normally Closed
Single & Double Break | | C _{2,} C ₃
etc. | RESISTOR | - ///// - | RES. | | MECHANICAL
INTERLOCK | | — Мі. | ELECTRONIC
TIMER | | ETD. | | PUSH BUTTONS:
Normally Open &
Normally Closed | | PB. | LINK:
With Boltod
Contacts | | LK. | | PUSH BUTTON:
Inching &
Similar | | IN.
PB. | CUT-OUT (FUSIBLE) With Separable Contacts | -0>0- | FU. | | TUMBLER SWITCH:
Single &
Double Pale | | TS. | INCANDESCENT
LAMP
DISCHARGE | | L. WITH COLOUR PREFIX e.g. RED: RIL. | | | • | | | | | |--|------------------|----------------|---|------------------|----------------| | DESCRIPTION | GRAPHICAL SYMBOL | CODE
LETTER | DESCRIPTION | GRAPHICAL SYMBOL | CODE
LETTER | | ROTARY SWITCH:
Single &
Double Pole | 88 | S. | MOVEABLE CONTACT | √ | MC. | | ROTARY SWITCH:
2 Way as "Hand
Off, Auto" | -60 | s. | FACE PLATE
RHEOSTAT:
General Symbol | 2003 | RH. | | LIMIT OR FLOAT SW:
(Single Pole) Single
& Double Break | 8 | LS. | AMMETER | AM | AM. | | LIMIT SWITCH: Double Break Change Over Type | | LS. | VOLTMETER | VM | VM. | | ISOLATING SWITCH: |
 | 15. | TERMINAL BOARD: Terminals Shown in Same Relative Place As On Gear | 1 2 3 4 5 6 7 8 | Т В. | | HALF WAVE
RECTIFIER | -4- | S. REC. | FULL WAVE
RECTIFIER | ~**** | F.REC. | #### Other Code Letters used on Brook Control Gear | F.C. | Forward Contactor | R.R.I | | |--------|-----------------------|--------|--------------------------------| | H.C. | High-speed Contactor | R.R.2 | Switches on
Rotor Regulator | | L.C. | Low-speed Contactor | etc. | | | O.L. | Overload Relay | R.R.S. | Rotor Resistance | | R.C. | Reverse Contactor | R.S.C. | Rotor Starting Contactor | | R.F.C. | Rotor Final Contactor | S.R. | Starting Resistance | | R.N. | Run Contactor | S.T. | Start Contactor | IW 247 Control Gear Connection Diagrams